Análisis de prevalencias y distribución de la infección por los protistas de la clase Mesomycetozoea en peces teleósteos: una revisión sistémica.

Gómez-de-Anda F. R. ¹, De-la-Rosa Arana J. L.², A. P. Cordero-López¹, A. P. Zepeda-Velázquez¹, A. Peláez-Acero¹, V. J. Acosta-Pérez¹

Fecha de envío: 11/Abril/2024

¹ Área Académica de Medicina Veterinaria y Zootecnia Instituto de Ciencias Agropecuarias, 43600 Tulancingo de Bravo, Hgo, México.

² Microbiología en Salud Humana, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Avenida Primero de Mayo S/N, Campo Uno, 54743 Cuautitlán Izcalli, Estado de México

Resumen

Los peces teleósteos son un amplio grupo biológico que en su producción y captura representan una importante industria socioeconómica. Desafortunadamente los peces cursan desafíos sanitarios incluyendo los asociados a parásitos protistas incluyendo los clasificados como Mesomycetozoea, la infección sin manejo sanitario deriva en mortalidades que generan pérdidas económicas en el sector. El presente trabajo aborda el análisis de las prevalencias y distribución mundial de estos parásitos, mediante una revisión sistémica desarrollada bajo las guías PRISMA. La revisión incluyó 11 artículos que evidenciaron infección por tres géneros protistas, Ichthyophonus spp., Dermocystidium spp. y Sphareothecum spp. así como dos parásitos a nivel de especie (Dermocystidium anguillae y Sphaereothecum desctruens), el análisis mostró un intervalo de prevalencias del 1.96% al 100%. En los artículos analizados se reportaron una muestra total de 9,837 peces, entre ellos se identificó una frecuencia total

de 1,926 peces positivos a protistas Mesomycetozoea, la infección se presentó en 21 especies de teleósteos, siendo los más recurrentes Scomber scombrus (878/1,926 [45.58%]), Hippoglossus stenolepis (364/1,926 [18.89%]) y Oreochromis niloticus (293/1,926 [15.21%]). Noruega fue el país que presentó mayor número de peces positivos con 879/1,926 (45.63%), todos correspondientes a Ichthyophonus spp., así mismo, se observó que la mayoría de peces positivos correspondieron a muestras obtenidas de la pesca y procesadas por técnicas de necropsia y microbiológicas, lo que sugiere relevante implementar técnicas moleculares para la determinación de estos protistas. El presente estudio, pretende coadyuvar al desarrollo de estrategias para el monitoreo y gestión de cargas parasitarias por protistas Mesomycetozoea en poblaciones de peces teleósteos.

Palabras clave: teleósteos, parásito, *Mesomycetozoea*, *Dermocystidium spp. Ichthyophonus spp.*.

Introducción

La obtención y producción de recursos acuícolas alrededor del mundo se fundamenta en acciones de pesca y acuacultura, una industria que genera un total de 223.2 millones de toneladas de productos para su comercialización (FAO, 2024). Entre los que destacan los productos obtenidos a partir de los peces teleósteos, un grupo de organismos cosmopolita de amplia diversidad biológica, que se caracterizan por contar con un sistema esquelético óseo (Bone & Moore, 2007). El aprovechamiento de los peces teleósteos desempeña un rol importante en la generación de empleos (N'Souvi et al., 2021; Nicheva et al., 2022), así como en la obtención

de recursos alimentarios de alta calidad; el consumo se asocia a la obtención de proteína de alta digestibilidad, grasas saludables, así como yodo, vitamina D y calcio (Cantillo et al., 2021). No obstante, algunas características biológicas como la ubicuidad en medio acuático, el nado en cardumen y las altas densidades de producción pueden propiciar la ocurrencia de enfermedades en las poblaciones de peces teleósteos (Makori et al., 2017), entre ellas las de tipo infecciosas asociadas a una amplia diversidad de patógenos correspondientes a virus, bacterias, hongos y parásitos (Opiyo et al., 2020). La presencia de estos agentes causales en las poblaciones de peces

deriva en efectos adversos, como crecimiento lento, descenso en la tasa reproductiva e incluso mortandad (Ali et al., 2020; Amaechi, 2015; Opiyo et al., 2018). En particular, las cargas parasitarias generan mortandad asociada a la intensidad de la infección, además, presentan un alto potencial de distribución, derivado de estrategias biológicas como su transmisión a lo largo de la red trófica (Bui et al., 2016) o la presencia de estadios con motilidad que facilitan su desplazamiento en búsqueda de hospederos en el medio ambiente incluyendo el medio acuático (Sumuduni et al., 2017), como es el caso de las infecciones por protistas un Mesomycetozoea, grupo monofilético de parásitos que se agrupan en los órdenes Dermocystida e Ichthyophonida (Mendoza et al., 2002). Los protistas Mesomycetozoea son un grupo de parásitos poco estudiados que presentan similitudes con los hongos, y que actúan como agentes patógenos altamente virulentos en las poblaciones de peces, por ejemplo, se ha reportado que la infección por el protista intracelular Sphareothecum destruens representa mortalidades de hasta el 90% cuando afecta a poblaciones de peces ciprínidos y salmónidos (Gozlan et al., 2014; Mendonca & Arkush, 2004). La infección por Mesomycetozoea se ha asociado a la disminución de las poblaciones de anfibios y peces teleósteos a nivel mundial. La signología es variable y puede incluir, en el caso de *Dermocystidium* spp. lesiones macroscópicas a nivel del branquias, aletas y piel, mientras que para Ichthyophonus spp. la infección se presenta en órganos internos como corazón,

visceras y a nivel de músculo (Rowley et al., 2013). Así mismo, se ha documentado que la carga parasitaria elevada de Mesomycetozoea puede desencadenar en la enfermedad conocida como ictiofonosis. Esta infección en salmónidos (Oncorhynchus mykiss) se asocia al desarrollo de puntos pigmentados obscuros en la región ventral y petequias hemorrágicas a nivel cutáneo, así como la presencia de granulomas que contienen al parásito en corazón, riñón e intestinos (Radosavljevic et al., 2024). En el establecimiento de la infección por Dermocystidium spp., se presentan quistes que no se pueden observar sin ayuda de técnicas microscópicas, mientras que en los casos de Ichthyophonus spp. y S. destruens, se presentan quistes diseminados y de tipo nodular. Cabe destacar que tanto en la infección por Dermocystidium spp. como por Ichthyophonus spp., se presenta el desarrollo de estructuras hifales (no ceptadas) en el hospedero, lo que dificulta la identificación inicial de los protistas Meozomycetozoea, interfiriendo con la aplicación de tratamientos de manera oportuna (Gozlan et al., 2014). En la infección, el diagnóstico se efectúa principalmente por microscopía y técnicas histológicas, con una crecienteparticipación del diagnóstico molecular, útil para distinguir de manera certera las cargas parasitarias por protistas Mesomycetozoea de otros microorganismos (Rowley et al., 2013). El seguimiento epidemiológico de estos parásitos protistas resulta importante para la industria de organismos acuícolas. Por ello, el objetivo de este trabajo fue el de abordar al análisis

sistémico de la prevalencia y distribución de protistas Mesomycetozoea en peces teleósteos, considerando su análisis independiente de las infecciones por hongos, en búsqueda de aportar información que ayude en su monitoreo y gestión epidemiológica.

Material y Métodos

1. Estrategia de búsqueda

Se planteó y desarrolló una búsqueda de recursos bibliográficos basada en las guías PRISMA, establecidas para búsquedas de ítems para la elaboración de revisiones sistémicas y metaanálisis (Hutton et al., 2015), la búsqueda se realizó utilizando tres motores

de búsqueda de bibliografía especializada PubMed® incluyendo (https://pubmed.ncbi. nlm.nih.gov/), ScienceDirect® (https://www. sciencedirect.com/) y Wiley Online Library (https://onlinelibrary.wiley.com/). En cada uno de estos buscadores se ingresaron las entradas de búsqueda (Cuadro 1), formuladas a partir de las palabras clave: "Fish", "Teleostean", "Mesomycetozoea disease", "Mesomycetozoea infection", "Aquaculture" y "Fish farm", con estas palabras se conformaron las entradas de búsqueda generales. Así mismo, se conformaron entradas de búsqueda especificas mediante las palabras: "Prevalence", "Ichthyophonus", "Dermocystidium" y "Sphaerothecum".

Tipo de entrada	Entrada de búsqueda					
General	(Fish OR Teleosts) AND ("Mesomycetozoea disease) AND (Aquaculture OR "Fish farm")					
General	(Fish OR Teleosts) AND ("Mesomycetozoea infection") AND (Aquaculture OR "Fish farm")					
Específicas	(Prevalence OR Determination) AND (Ichthyophonus) AND (Fish OR Teleosts)					
	(Prevalence OR Determination) AND (Dermocystidium) AND (Fish OR Teleosts)					
	(Prevalence OR Determination) AND (Sphaerothecum) AND (Fish OR Teleosts)					

Cuadro 1. Entradas de búsqueda utilizadas para la identificación de recursos bibliográficos referentes a infecciones por protistas Mesomycetozoea que afectan a los peces teleósteos.

2. Criterios de inclusión y exclusión

Se establecieron criterios de inclusión para los recursos bibliográficos que incluyeron: 1) artículos científicos catalogados como artículo de autor, 2) publicados en idioma inglés, 3) con fecha de publicación dentro de los últimos 10 años, 4) que el artículo incluyese información cuantitativa para la descripción de la relación

parásito Mesomycetozoea-pez teleósteo y 5) que el pez reportado presente importancia comercial en pesca o acuacultura. En contraparte, los artículos que se descartaron para la realización de este trabajo presentaron alguno de los siguientes criterios de exclusión: 1) reportes en tesis, tesinas, memorias de congreso, resúmenes de congreso, enciclopedias, libros, capítulos

de libro, revisiones, revisiones sistémicas, análisis bibliométricos y meta-análisis, 2) reportes publicados en idiomas distintos al inglés, 3) artículos publicados antes de 2015, 4) recursos que no reportan la prevalencia o datos para calcular la prevalencia (tamaño de muestra y número de peces positivos para el protista Meosomycetozoea), y 5) que el reporte represente un hallazgo fortuito y/o que no

represente un interés comercial para la pesca o la acuacultura. La gestión de recursos permitió seleccionar finalmente 11 artículos incluidos en el presente trabajo, la figura 1 indica el proceso de selección de los recursos incluidos en el análisis, donde se incluyen las etapas de identificación, revisión, elegibilidad y selección, de acuerdo a lo establecido en guías PRISMA (Moher et al., 2009).

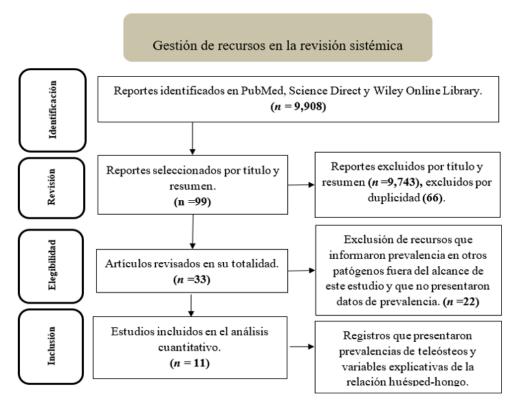


Figura 1.- Diagrama de flujo de los recursos bibliográficos de acuerdo a las directrices PRISMA para elaboración de revisiones sistémicas.

3. Extracción de datos

Los recursos bibliográficos que cumplieron los criterios de inclusión-exclusión, fueron revisados por los autores para confirmar su inclusión en el estudio, las discrepancias fueron resueltas en todos los casos bajo trabajo colegiado,

posteriormente los 11 artículos seleccionados se utilizaron para la extracción de datos que se incluyeron y etiquetaron como: Autor, año, país, continente, origen de la muestra, análisis para la determinación, especie de pez, especie del

Resultados y Discusiones

parásito protista, tamaño de muestra, número de peces positivos y prevalencia, las variables se utilizaron como variables explicativas de la relación protista-pez. La extracción de datos fue validada por todos los autores para su posterior análisis.

4. Análisis de datos

Los datos fueron tabulados para el análisis mediante una hoja de cálculo de Excel Microsoft Office®, los datos de prevalencias (Formula a), posteriormente se obtuvo una n muestral y una n de peces positivos general a partir de los 11 artículos incluidos en el análisis, mediante la n de peces positivos por protistas Mesomycetozoea se cuantificaron las frecuencias (Formula b) y porcentajes relacionados a cada variable explicativa. Las relaciones entre variables se graficaron mediante un Sankey plot, elaborado con el uso del software VisualParadigm®, donde se visualiza la frecuencia de peces positivos relacionados para cada variable. Finalmente se analizó la distribución mundial de los reportes mediante la herramienta TomTom® de Excel Microsoft Office® Map Chart.

Formula a) prevalencia=no. total, de organismos infectados en una muestra*100/n muestral (Bush & Holmes, 1986).

Formula b) frecuencia= no. total, de organismos infectados en una muestra (Bush & Holmes, 1986).

1. Prevalencia de Mesomycetozoea en peces teleósteos

Se incluyeron y analizaron un total de 11 artículos, la información de los reportes se encuentra concentrada en el Cuadro 2, donde se describe un total de 38 poblaciones de peces muestreadas que presentaron prevalencia para la infección de protistas Mesomycetozoea en peces teleósteos. Las afecciones se atribuyeron a tres géneros parasitarios entre los que destacó *Ichthyophonus* spp. que afecto a 24 poblaciones de peces, donde el valor de prevalencia fluctuó entre 1.96-100%. En contraste, la infección por Dermocystidium anguillae solo se reportó infectando al pez Anguilla rostrata con una prevalencia de 42.42%. El análisis de prevalencia evidenció que la infección se presenta de forma heterogénea, con un valor mínimo de 1.96%, correspondiente a la infección por Ichthyophonus spp. en peces de la especie Limanda ferruginea. En contraste se reportó hasta un 100% de prevalencia en la afección de salmónidos de la especie Oncorhynchus gorbuscha por Ichthyophonus spp. En general, los artículos mostraron una tendencia de estudio sobre infecciones causadas por Ichthyophonus spp.; este protista se ha reportado afectando a peces de producción acuícola (Salmo gairdneri), así como a peces obtenidos de la pesca, como Seriola quinqueradiata, usualmente con altos valores de prevalencia. Por ejemplo, en Japón se reportó en un 70% cuando la infección se presentó en Oncorhynchus mykiss, un pez de alta tradición en la acuacultura mundial

(Okamoto et al., 1985). En contraste, en Suecia se reportaron prevalencias comprendidas entre 4.2% (Clupea arengus) y 17% (Pleuronectes flesus), con un reporte intermedio de 11.7% para el pez Sprattus sprattus, todos correspondientes a la pesca (Rahimian, 1998). En general los reportes concuerdan con los valores analizados en este trabajo, donde también se observa una alta heterogeneidad de la afección por Mesomycetozoea.

Por otro lado, se encontraron reportes del 100% de prevalencia para *Dermocystidium* spp. infectando a organismos de la especie *Pangasianodon hypophthalmus* (Cuadro 2), *Dermocystidium* spp. se reportó con anterioridad en peces de la cruza *Colossoma macropomum* x *Piaractus brachypomus* en la acuacultura

brasileña, donde se describieron quistes a nivel de la dermis, asociadas a hiperplasia y hemorragias en el tejido de la periferia del quiste, así como la presencia de infiltrados de células inflamatorias (Fujimoto et al., 2018). Además, la infección por Dermocystidium spp. se ha reportado en granjas de agua marina, donde peces de la especie Salmo salar presentaron agrandamiento del riñón, y nódulos como parte de una respuesta granulomatosa progresiva, así como hiperplasia y edema en las láminas branquiales (Bruno, 2001). En complemento se reportó infección por Sphaerothecum destruens un parásito que también se ha reportado causando lesiones de tipo nodular diseminadas, en los órganos internos, y que se ha reportado afectando a salmónidos y ciprínidos, con mortandad de hasta el 90% (Gozlan et al., 2014).

Reporte	Especie de pez	Parásito Mesomycetozoea	Prev. % (Positivos/n muestral)	País	Origen de la muestra	Diagnóstico
(Gregg et al., 2016)	Alosa sapidissima	Ichthyophonus spp.	4.51 (53/1175)			
	Clupea pallasii		20.45 (45/220)			
	Gadus chalcogrammus		10.53 (6/57)		Pesca	Molecular
	Gadus macrocephalus		3.57 (2/56)			
	Hippoglossus stenolepis		50.00 (30/60)			
	Leptocottus armatus		5.88 (1/17)	Estados Unidos		
	Myoxocephalus jaok		11.76 (4/34)			
	Myoxocephalus		6.15 (4/65)			
	polyacanthocephalus		6.80 (10/147)			
	Reinhardtius hippoglossoides		3.33 (1/30)			
	Sebastes flavidus					
(Floyd-Rump et al., 2017)*	Oncorhynchus tshawytscha	Ichthyophonus spp.	7.84 (4/51)	Estados Unidos	Pesca	Molecular
			6.25 (2/32)			
			8.33 (1/12)			
(Huntsberger et al., 2017)	Limanda ferruginea	Ichthyophonus spp.	1.96 (26/1325)	Canada	Pesca	Histología

(Sana et al., 2017)**	Pseudorasbora parva	Sphaerothecum destruens	10.00 (2/20) 5.00 (1/20) 5.00 (1/20) 5.00 (1/20) 5.00 (1/20) 10.00 (2/20) 5.00 (1/20) 10.00 (2/20) 5.00 (1/20) 5.00 (1/20) 5.00 (1/20)	China	Pesca	Molecular
(Harris et al., 2018)	Ophiodon elongates Sebastes ruberrimus Sebastes melanops Hippoglossus stenolepis Gadus macrocephalus	Ichthyophonus spp.	7.69 (45/585) 3.42 (20/585) 9.57 (56/585) 57.09 (334/585) 9.91 (58/585)	USA	Acuacul- tura	Microbio- logía
(Steckert et al., 2019)	Oreochromis niloticus	Dermocystidium spp.	8.33 (5/60)	Brasil	Acuacul- tura	Histología
(Mahboub & shaheen, 2021)	Oreochromis niloticus	Ichthyophonus spp	19.00 (76/400) 53.00 (212/400)	Egipto	Acuacul- tura Pesca	Histología
(Li et al., 2022)	Anguilla rostrata	Dermocystidium anguillae	42.42 (28/66)	China	Acuacul- tura	Molecular
(Cardoso et al., 2022)	Pangasianodon hypophthalmus	Dermocystidium spp.	100.00 (10/10)	Brasil	Acuacul- tura	Histología
(Storesund et al., 2022)	Scomber scombrus	Ichthyophonus spp.	70.73 (679/960) 20.73 (199/960)	Norue- ga	Pesca	Necropsia Microbio- logía
(Erkinharju et al., 2024)	Oncorhynchus gorbuscha	Ichthyophonus spp.	100.00 (1/1)	Norue- ga	Pesca	Molecular

Cuadro 2. Prevalencia de la infección por protistas Mesomycetozoea en peces de interés comercial.

Nota: Prev. Prevalencias, *Reporta la misma relación parásito-pez con prevalencias en tres puntos de muestreo en USA, ** Reporta prevalencia para la misma relación parásito-pez de diferentes puntos de muestreo en China.

2. Caracterización de la frecuencia de infección por protistas Mesomycetozoea en peces teleósteos

En los 11 artículos incluidos en este trabajo se reportó un total de 9,837 peces individuales muestreados, entre los cuales se reportaron 1,926 casos de peces positivos para algún protista Mesomycetozoea, lo que representa una prevalencia global del 19.57%, las frecuencias de peces positivos asociados a las variables explicativas se observan en la figura 2. Entre las variables asociadas se pudo observar que los reportes correspondieron a 8 países, aunque Noruega, Estados Unidos y Egipto, documentaron de manera conjunta 1,843/1,926 peces positivos correspondientes al 95% de los peces positivos. En relación al origen de la muestra, se registraron dos categorías donde la variable "Pesca" presentó mayor frecuencia con 1,294/1,926 peces positivos y un 67.18%. Pese a esta tendencia de los reportes, la dispersión de las cargas parasitarias es viable en poblaciones de peces obtenidos de la pesca, así como de la acuacultura, por ejemplo, se ha reportado que Salmo salar por su característica de pez anádromo, puede fungir como reservorio de Dermocystidium spp. y participar en su dispersión entre peces de agua dulce y peces de agua salada (Bruno, 2001). Así mismo, para el ambiente dulceacuícola el ciprínido Pseudorasbora parva se ha catalogado como un pez teleósteo que funge como reservorio para dispersión de S. destruens, un protista relacionado a mortalidades en otros peces dulceacuícolas

como Cyprinus carpio y Abramis brama (Sana et al., 2017). Estos reportes sugieren que los protistas Mesomycetozoea se perfilan como una problemática general en los peces teleósteos, ya sean de agua marina o agua dulce (Andreou et al., 2012). En los artículos analizados en este trabajo, el diagnostico de los protistas Mesomycetozoea se reportó por cuatro diferentes métodos, entre los que destacó el uso de técnicas microbiológicas (712/1,926 [36.96%]), seguido de identificación por necropsia (679/1,926 [35.25%]). En relación a los métodos de diagnóstico, se pudo observar que las técnicas de observación macroscópica (necropsia) y microscópica (microbiología), son utilizadas en mayor medida que las técnicas histológicas y moleculares (Figura 2). No obstante, dado que algunos de los protistas Mesomycetozoea fueron reportados y reconocidos anteriormente como hongos (Okamoto et al., 1985; Rahimian, 1998; Spanggaard et al., 1994), resulta cada vez más importante incorporar estudios de perfil molecular para la determinación y el seguimiento epidemiológico de estos patógenos; En este tenor, la amplificación del gen 18S rRNA, resulta en una importante herramienta para la identificación específica (Charrier et al., 2016; Mendoza et al., 2002). Por otro lado, el diagrama de Sankey, evidenció que la relación protista-pez incluyó el reporte de cuatro protistas Mesomycetozoea, afectando a un total de 21 especies de peces teleósteos de interés comercial, ya sea obtenidos de la pesca o de la acuacultura (Figura 2). En la frecuencia de peces positivos se pudo observar

que Ichthyophonus spp. fue el protista más recurrente con 1,869 peces positivos (97.04%), Ichthyophonus spp. se encontró asociado con 18 especies de peces, donde destacaron Scomber scombrus (878/1,926 [45.58%]), Hippoglossus stenolepis (364/1,926 [18.89%]) y Oreochromis *niloticus* (293/1,926 [15.21%]), que en conjunto representaron el 79.69% de los peces positivos reportados. Ichthyophonus spp. resulta en un patógeno de alta importancia debido a que ante la infección, algunos peces de agua dulce y ornamentales como Gymnocorymbus ternetzi y Pentius tetrazona presentan signología que incluye granulomas, estructuras que contienen el esquizonte (célula multinuclear resultante de la división del trofozoíto) y que se localizan en los órganos afectados como corazón, los nódulos presentan medidas entre los 54-182 µm, del mismo modo, la infección deriva en el desarrollo de puntos negros resultantes de una reacción de melanización, su medida oscilan entre los 2.49-6.77 µm, con presencia en los órganos afectados como el bazo (Rahim Peyghan, 2014). Dentro del género Ichthyophonus spp. la especie Ichthyophonus hoferi es la más recurrente en peces, luego de la infección de este patógeno el pez puede ser hospedador hasta por 110 días antes de presentar mortandad, lo que aumenta el riesgo de dispersión del patógeno en las poblaciones de peces (Spanggaard et al., 1994)

una situación que puede relacionarse a las infecciones en vida silvestre. Cabe destacar que este género de Mesomycetozoea se ha reportado como un organismo de hospedero inespecífico, relacionado hasta con 80 especies de pez (Spanggaard et al., 1994), lo cual, es concordante con este estudio, donde Ichthyophonus spp. fue el protista más prevalente y se relacionó con hasta 18 especies de pez (Figura 2), entre los que destacó Scomber scombrus, un pez que presenta altos niveles de extracción en el mar mediterráneo para usos comerciales como la extracción de aceite (Bako et al., 2014). Simultáneamente, destacó la infección en Oreochromis niloticus, un cíclido de alta tradición en el cultivo y de interés comercial a nivel mundial para el consumo de carne (El-Sayed, 2020). Los reportes se complementaron por la infección de *Dermocystidium* spp. (15/1,926 [0.77%]), y la identificación de dos protistas Mesomycetozoea a nivel de especie correspondientes a Dermocystidium anguillae (28/1,926 [1.45%]) y Sphaerothecum destruens (14/1,926 [0.72%]). En este estudio *S. destruens* se relacionó a poblaciones del pez ciprínido Pseudorasbora parva, una relación ecológica que cuenta con reporte anteriormente en Francia y China (Andreou et al., 2012; Charrier et al., 2016; Sana et al., 2017).

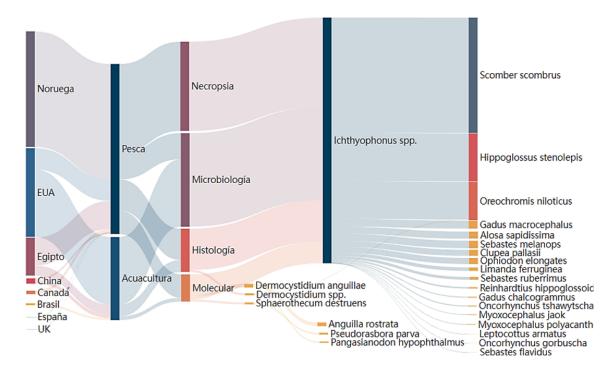


Figura 2.Diagrama de Sankey, en él se observa la relación entre las variables categóricas asociadas a la infección por protistas Mesomycetozoea en peces teleósteos, el grosor de los vectores resulta del número de peces positivos individuales asociados a cada categoría.

3. Distribución geográfica de los protistas Mesomycetozoea en peces teleósteos

Los reportes de la relación Mesomycetozoea-pez teleósteo se han producido en 4 de 5 continentes a nivel mundial (Figura 3). En América, Estados Unidos presentó el mayor número de peces positivos (676/1,926 [35.09%]); sin embargo, todos los reportes correspondieron a infección por Ichthyophonus spp., mientras que en Europa destacó el monitoreo realizado en Noruega, donde se reportaron 879 peces positivos (45.63%) para *Ichthyophonus* spp.. Los reportes se complementaron con lo correspondiente para el continente africano, donde Egipto evidenció un número de peces positivos a Ichthyophonus 288/1,926 (14.95%), denotando spp. de una tendencia al monitoreo de este protista

Mesomycetozoea. En el presente análisis, los reportes de Mesomycetozoea incluyeron 8 países que presentan costas en su jurisdicción, entre ellos algunos países cuentan con excelente perfil de producción acuícola como China, EUA, Egipto y Noruega (FAO, 2024). En contraste, en Brasil solo se reportó el género Dermocystidium spp. con una baja frecuencia de peces positivos (15/1,926 [0.77%]), en China se reportaron dos protistas Mesomycetozoeaa nivel de especie, aunque con baja frecuencia de peces positivos, la especie Dermocystidium anguillae se identificó en 28 peces positivos (1.45%), mientras que Sphaerothecum destruens solo en 12 peces positivos (0.62%). Cabe señalar que en la búsqueda sistémica no se encontraron reportes para México, pese a la presencia de

industria acuícola en el país (FAO, 2024), por lo que esfuerzos de muestreo pueden direccionarse para el seguimeinto de estos protistas. El análisis mostró que la mayor proporción de peces positivos se presentó en países con alta producción piscícola y pesquera, es probable que esto se deba a que el esfuerzo focalizado en el monitoreo y gestión de patógenos en esos lugares, permita la detección oportuna de

los parásitos (Can et al., 2023; Jahangiri et al., 2023; Kaleem & Bio Singou Sabi, 2020). No obstante, es indispensable que la industria de organismos acuícolas continue con la aplicación de programas de bioseguridad para disminuir el ingreso y propagación de enfermedades, así como para disminuir las pérdidas económicas asociadas a los brotes (Palić, Scarfe, & Walster, 2015).

Figura 3. Distribución por país de los protistas Mesomycetozoea que se reportaron infectando a peces teleósteos, el número entre paréntesis indica la frecuencia de peces individuales positivos reportados, mientras que el grafico de pastel indica el género o especie reportado por país.

Conclusiones

Se identificaron y se analizaron los reportes de peces positivos a protistas Mesomycetozoea en peces teleósteos, se observó que *Ichthyophonus* spp. es el protista de mayor frecuencia y prevalencia presente en los peces, no obstante,

los valores de prevalencia fueron heterogéneos. Las infecciones fueron primordialmente identificadas en peces obtenidos de la pesca, que fueron procesados por necropsia y observaciones microscópicas, denotando

la necesidad de complementar con pruebas moleculares para contar con mayor certeza del reconocimiento de los patógenos, mismos que se observaron afectando a una amplia diversidad de peces teleósteos, algunos como los cíclidos y salmónidos con una amplia tradición de cultivo e importancia socioeconómica. Las lesiones pueden incluir puntos negros cutáneos, granulomas en órganos internos y desarrollo de estructuras similares a las hifas, que en algunos casos pueden confundirse con infecciones micóticas, por lo que resulta importante llevar a cabo el monitoreo de protistas Mesomycetozoea, con el objetivo de aportar información útil para desarrollar programas de prevención y control de los agentes patógenos en las poblaciones de peces teleósteos.

CONFLICTO DE INTERESES

Los autores del presente artículo declaran que no existe ningún tipo de conflicto de intereses, ni ninguna relación económica, personal, política, interés financiero, ni académico que pueda influir en el juicio de los mismos.

Referencias

- Ali, F. F., Al-Taee, S. K., & Al-Jumaa, Z. M. (2020).Isolation. molecular identification, and pathological lesions of Saprolegnia spp. isolated from common carp, Cyprinus carpio in floating cages in Mosul, Iraq. Veterinary World, 13(12), 2759–2764. https://doi.org/10.14202/ vetworld.2020.2759-2764
- Amaechi, C. E. (2015). Prevalence, intensity and abundance of endoparasites in Oreochromis niloticus and Tilapia zilli (Pisces: Cichlidae) from Asa Dam, Ilorin, Nigeria. UNED Research Journal, 7(1), 67–70. https://doi.org/10.22458/ urj.v7i1.863
- Andreou, D., Arkush, K. D., Guégan, J. F., & Gozlan, R. E. (2012). Introduced pathogens and native freshwater biodiversity: A study case Sphaerothecum destruens. PLoS ONE, 7(5),https://doi.org/10.1371/ 3–8. journal.pone.0036998
- Bako, T., Umogbai, V. I., & Obetta, S. E. (2014). Extraction and Characterization of Mackery (Scomber scombrus) Oil for Industrial Use. Researcher, 6(8), 80–85. http://www.sciencepub.net/researcher
- Bone, Q., & Moore, R. (2007). Biology of Fishes (Third Edit). Taylor and Francis. South Carolina, USA.
- Bruno, D. W. (2001). Dermocystidium sp. in Scottish Atlantic salmon, Salmo salar: Evidence for impact on fish in marine fish farms. Bulletin of the European

- Association of Fish Pathologists, 21(5), 209–213.
- Bui, T. N., Pham, T. T., Nguyen, N. T., Nguyen, H. Van, Murrell, D., & Phan, V. T. (2016). The importance of wild fish in the epidemiology of *Clonorchis sinensis* in Vietnam. *Parasitology Research*, *115*(9), 3401–3408. https://doi.org/10.1007/s00436-016-5100-8
- Bush, A. O., & Holmes, J. C. (1986). Intestinal helminths of lesser scaup ducks: patterns of association. *Canadian Journal of Zoology*, 64(1), 132–141. doi:10.1139/z86-022
- Can, E., Austin, B., Steinberg, C. E. W., Carboni, C., Sağlam, N., Thompson, K., Yiğit, M., Can, S. S., & Ergün, S. (2023). Best practices for fish biosecurity, well-being and sustainable aquaculture. *Sustainable Aquatic Research*, *2*(3), 221–267. https://doi.org/10.5281/zenodo.10444855
- Cantillo, J., Martín, J. C., & Román, C. (2021).

 Determinants of fishery and aquaculture products consumption at home in the EU28. *Food Quality and Preference*, 88(September 2020). https://doi.org/10.1016/j.foodqual.2020.104085
- Cardoso, P. H. M., Relvas, R. S., Balian, S. de C., Moreno, A. M., Soares, H. S., Silva, L. A. S., & Martins, M. L. (2022). *Dermocystidium* sp. infection in farmed striped catfish *Pangasianodon hypophthalmus* farmed in Ceará state, Northeastern Brazil. *Revista Brasileira de Parasitologia Veterinaria*, 31(2), 2–5. https://doi.org/10.1590/S1984-

29612022025

- Charrier, A., Peudpiece, M., Lesne, M., & Daniel, P. (2016). First report of the intracellular fish parasite *Sphaerothecum destruens* associated with the invasive topmouth gudgeon (*Pseudorasbora parva*) in France. *Knowledge and Management of Aquatic Ecosystems*, 2016-Janua(417), 0–3. https://doi.org/10.1051/kmae/2016031
- El-Sayed, A.-F. M. (2020). Taxonomy and basic biology. *Tilapia Culture*, 21–31. https://doi.org/10.1016/b978-0-12-816509-6.00002-1
- Erkinharju, T., Hansen, H., & Garseth, Å. H. (2024). First detection of *Ichthyophonus* sp. in invasive wild pink salmon (*Oncorhynchus gorbuscha*) from the North Atlantic Ocean. *Journal of Fish Diseases*, 47(9), 1–7. https://doi.org/10.1111/jfd.13990
- FAO. (2024). The state of world fisheries and aquaculture. In *Nature and Resources* (Vol. 35, Issue 3).
- Floyd-Rump, T. P., Horstmann-Dehn, L. A., Atkinson, S., & Skaugstad, C. (2017). Effect of *Ichthyophonus* on blood plasma chemistry of spawning chinook salmon and their resulting offspring in a yukon river tributary. *Diseases of Aquatic Organisms*, 122(3), 223–236. https://doi.org/10.3354/dao03077
- Fujimoto, R. Y., Couto, M. V. S., Sousa, N.
 C., Diniz, D. G., Diniz, J. A. P., Madi,
 R. R., Martins, M. L., & Eiras, J. C.
 (2018). *Dermocystidium* sp. infection

- in farmed hybrid fish *Colossoma* macropomum × Piaractus brachypomus in Brazil. Journal of Fish Diseases, 41(3), 565–568. https://doi.org/10.1111/jfd.12761
- Gozlan, R. E., Marshall, W. L., Lilje, O., Jessop, C. N., Gleason, F. H., & Andreou, D. (2014). Current ecological understanding of fungal-like pathogens of fish: What lies beneath? *Frontiers in Microbiology*, 5(FEB), 1–16. https://doi.org/10.3389/fmicb.2014.00062
- Gregg, J. L., Powers, R. L., Purcell, M. K., Friedman, C. S., & Hershberger, P. K. (2016). *Ichthyophonus* parasite phylogeny based on ITS rDNA Structure prediction and alignment identifies six clades, with a single dominant marine type. *Diseases of Aquatic Organisms*, 120(2), 125–141. https://doi.org/10.3354/dao03017
- Harris, B. P., Webster, S. R., Wolf, N., Gregg, J. L., & Hershberger, P. K. (2018). *Ichthyophonus* in sport-caught groundfishes from southcentral Alaska. *Diseases of Aquatic Organisms*, *128*(2), 169–173. https://doi.org/10.3354/dao03218
- Huntsberger, C. J., Hamlin, J. R., Smolowitz, R. J., & Smolowitz, R. M. (2017). Prevalence and description of *Ichthyophonus* sp. in yellowtail flounder (*Limanda ferruginea*) from a seasonal survey on Georges Bank. *Fisheries Research*, 194(February), 60–67. https://doi.org/10.1016/j.fishres.2017.05.012

- Hutton, B., Salanti, G., Caldwell, D. M., Chaimani, A., Schmid, C. H., Cameron, C., Ioannidis, J. P. A., Straus, S., Thorlund, K., Jansen, J. P., Mulrow, C., Catala-Lopez, F., Gotzsche, P. C., Dickersin, K., Boutron, I., Altman, D. G., & Moher, D. (2015). The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. *Annals of Internal Medicine*, 162(11), 777–784. https://doi.org/10.7326/M14-2385
- Jahangiri, L., Shum, S., Pfeiffer, D. U., Leung, C. F., Marques, A. R. P., & St-Hilaire, S. (2023). An economic model to assess biosecurity management strategies for marine fish farms in Hong Kong SAR. *Aquaculture*, 567(August 2022), 739294. https://doi.org/10.1016/j. aquaculture.2023.739294
- Kaleem, O., & Bio Singou Sabi, A. F. (2020). Overview of aquaculture systems in Egypt and Nigeria, prospects, potentials, and constraints. *Aquaculture and Fisheries*, 4(April), 1–13. https://doi.org/10.1016/j.aaf.2020.07.017
- Li, D., Nie, P., & Liu, Y. (2022). Detection of Dermocystidium anguillae in imported elvers of American eel Anguilla rostrata in China. Folia Parasitologica, 69, 1–7. https://doi.org/10.14411/fp.2022.013
- Mahboub, H. H., & shaheen, A. A. (2021). Mycological and histopathological identification of potential fish pathogens in Nile tilapia. *Aquaculture*, 530(August

- 2020), 735849. https://doi.org/10.1016/j. aquaculture.2020.735849
- Makori, A. J., Abuom, P. O., Kapiyo, R., Anyona, D. N., & Dida, G. O. (2017). Effects of water physico-chemical parameters on tilapia (*Oreochromis niloticus*) growth in earthen ponds in Teso North Sub-County, Busia County. *Fisheries and Aquatic Sciences*, 20(1), 1–10. https://doi.org/10.1186/s41240-017-0075-7
- Mendonca, H. L., & Arkush, K. D. (2004).

 Development of PCR-based methods for detection of Sphaerothecum destruens in fish tissues. 61(1), 187–197.
- Mendoza, L., Taylor, J. W., & Ajello, L. (2002). The class Mesomycetozoea: A heterogeneous group of microorganisms at the animal-fungal boundary. *Annual Review of Microbiology*, *56*(May), 315–344. https://doi.org/10.1146/annurev.micro.56.012302.160950
- Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *BMJ* (Online), 339(7716), 332–336. https://doi.org/10.1136/bmj.b2535
- N'Souvi, K., Sun, C., Egbendewe-Mondzozo, A., Tchakah, K. K., & Alabi-Doku, B. N. (2021). Analysis of the impacts of socioeconomic factors on hiring an external labor force in tilapia farming in Southern Togo. *Aquaculture and Fisheries*, 6(2), 216–222. https://doi.org/10.1016/j.aaf.2020.07.010
- Nicheva, S., Waldo, S., Nielsen, R., Lasner,

- T., Guillen, J., Jackson, E., Motova, A., Cozzolino, M., Lamprakis, A., Zhelev, K., & Llorente, I. (2022). Collecting demographic data for the EU aquaculture sector: What can we learn? *Aquaculture*, 559(May), 738382. https://doi.org/10.1016/j.aquaculture.2022.738382
- Okamoto, N., Nakase, K., Suzuki, H., Nakai, Y., Fujii, K., & Sano, T. (1985). Life History and Morphology of *Ichthyophonus hoferi* in Vitro. *Fish Pathology*, 20, 273–285. https://doi.org/10.3147/jsfp.20.273
- Opiyo, M.A., Marijani, E., Muendo, P., Odede, R., Leschen, W., & Charo-Karisa, H. (2018). A review of aquaculture production and health management practices of farmed fish in Kenya. *International Journal of Veterinary Science and Medicine*, 6(2), 141–148. https://doi.org/10.1016/j.ijvsm.2018.07.001
- Opiyo, M. A., Venny Mziri, S. M., Domitila Kyule, Shebanhinzano, Miriam Wainaina, Esther Magondu, Kenneth Werimo, & Veronica Ombwa. (2020). Fish Disease Management and Biosecurity Systems. Status of Aquaculture in Kenya, April 2021, 97–126. https://www.researchgate.net/publication/351050775
- Palić, D., Scarfe, A. D., & Walster, C. I. (2015).

 A Standardized Approach for Meeting
 National and International Aquaculture
 Biosecurity Requirements for
 Preventing, Controlling, and Eradicating
 Infectious Diseases. Journal of Applied
 Aquaculture, 27(3), 185–219. doi:10.10
 80/10454438.2015.1084164

- Radosavljevic, V., Radanovic, O., Glišic, D., Zdravkovic, N., Maksimovic-zoric, J., Nesic, K., Savic, B., & Raškovic, B. (2024). First case of ichthyophonosis in farmed rainbow trout Oncorhynchus mykiss in Serbia. Diseases of Aquatic Organisms, 159, 91-97. https://doi. org/10.3354/dao03804
- Rahim Peyghan, M. J. (2014). The Detection of Ichthyophonus hoferi in Naturally Infected Fresh Water Ornamental Fishes. Journal of Aquaculture Research & Development, 05(07). https://doi. org/10.4172/2155-9546.1000289
- Rahimian, H. (1998). Pathology and morphology of *Ichthyophonus hoferi* in naturally infected fishes off the Swedish west coast. Diseases of Aquatic Organisms, 34(2), 109–123. https://doi.org/10.3354/ dao034109
- Rowley, J. J. L., Gleason, F. H., Andreou, D., Marshall, W. L., Lilje, O., & Gozlan, R. (2013). Impacts of mesomycetozoean parasites on amphibian and freshwater fish populations. Fungal Biology Reviews, 27(3-4), 100-111. https://doi. org/10.1016/j.fbr.2013.09.002
- Sana, S., Hardouin, E. A., Gozlan, R. E., Ercan, D., Tarkan, A. S., Zhang, T., & Andreou, D. (2017). Origin and invasion of the emerging infectious pathogen Sphaerothecum destruens. Emerging *Microbes & Infections*, 6(8), e76. https:// doi.org/10.1038/emi.2017.64
- Spanggaard, B., Gram, L., Okamoto, N., &

- Huss, H. H. (1994). Growth of the fish-pathogenic fungus, Ichthyophonus hoferi, measured by conductimetry and microscopy. Journal of Fish Diseases, 17(2), 145–153. https:// doi.org/10.1111/j.1365-2761.1994. tb00207.x
- Steckert, L. D., Cardoso, L., Tancredo, K. R., Martins, M. L., & Jerônimo, G. T. (2019). Dermocystidium sp. In the gills of farmed Oreochromis niloticus in Brazil. Anais Da Academia Brasileira de Ciencias, 91(3), 1-5. https://doi. org/10.1590/0001-3765201920180959
- Storesund, J. E., Nylund, C. da S., Karlsbakk, E., Giulietti, L., Bao, M., Cipriani, P., & Levsen, A. (2022). High prevalence of *Ichthyophonus* sp. infections in Northeast Atlantic mackerel (Scomber scombrus). Journal of Fish Diseases, 45(8), 1243– 1249. https://doi.org/10.1111/jfd.13652
- Sumuduni, B., Munasinghe, D., & Arulkanthan, A. (2017). Survivability and Transmission rate of Centrocestus sp. Cercariae to early fingerlings of Koi carp (Cyprinus carpio) an Journal of Fisheries and Life Science, December 2017.